Aluminum Adjuvants in Vaccines

by James Odell, ND, OMD, L.Ac.

Aluminum is used as a vaccine adjuvant—a substance that when mixed with an antigen from a virus or bacteria, elicits a greater inflammatory immune response and theoretically a higher response of protective antibodies. Aluminum-containing adjuvants are often simply referred to as “alum.” This term should be avoided for two reasons. First, alum is the name of a specific chemical compound, hydrated potassium aluminum sulfate, KAl(SO4)2·12 H2O. Precipitation of a solution of alum and antigen was originally used for the preparation of aluminum-adjuvanted vaccines. The chemical composition of the aluminum precipitate depends on the type of ions present in the antigen solution. The precipitation method is difficult to reproduce in a consistent manner and has largely been replaced by adsorption of antigens to aluminum-containing gels. The second reason to avoid the term alum is that it fails to specify which type of aluminum-containing adjuvant was used for the vaccine preparation. The two main types of aluminum adjuvants that are commercially available are aluminum hydroxide adjuvant (AH) and aluminum phosphate adjuvant (AP). The physical and chemical composition of AH and AP are quite different and this has important implications for the formulation with antigens.

Thus, there are two aluminium based adjuvants (ABAs) commonly used in vaccines. Alhydrogel® is a semi-crystalline form of aluminium oxyhydroxide and AdjuPhos® is an amorphous salt of aluminium hydroxyphosphate. A sulphate salt of the latter (AAHS) is also listed as being one component of an adjuvant system used in HPV vaccinations. Alhydrogel® and AdjuPhos® are commonly referred to as ‘clinically approved ABAs’, however, this is not the case. There are no ABAs which have been approved for intramuscular or subcutaneous injection into humans. Aluminium salts are the most common type of vaccine adjuvant in use, despite abundant science establishing aluminium as a neurotoxin. Generally, live vaccines will not contain aluminum. Only vaccines made with killed/inactivated viruses and so-called “toxoid” vaccines may contain it, and this goes for both childhood and adult vaccines. In 2002, only two childhood vaccines contained aluminum adjuvants, but the aluminium picture had changed dramatically by 2016, when children received five aluminium-containing vaccines from birth to age three and at least two more in the teenage years. Thus, in the United States, Canada, Europe, Australia, and many other parts of the world, infants and young children receive high quantities of aluminium from multiple inoculations.

Adjuvants are classed as a vaccine excipient. The following link summarizes most other vaccine excipients:

Excipient List:

  • Preservatives used to prevent contamination. For example, thimerosal.

  • Adjuvants used to stimulate a stronger immune response. For example, aluminum salts.

  • Stabilizers used to keep the vaccine potent during transportation and storage. For example, sugars or gelatin.

  • Inactivating ingredients used to kill viruses or inactivate toxins. For example, formaldehyde.

  • Antibiotics used to prevent contamination by bacteria. For example, neomycin.

  • Others are residual trace amounts of materials that were used during the manufacturing process and removed. These can include: Cell culture materials, used to grow the vaccine antigens. For example, egg protein, various culture media.

Despite almost 90 years of widespread use of aluminium adjuvants, medical science's understanding about their mechanisms of action is still remarkably poor. There is also a concerning scarcity of data on toxicology and pharmacokinetics of these compounds. Despite this, the false notion that aluminium in vaccines is safe appears to be widely accepted. Experimental research clearly shows that aluminium adjuvants have a potential to induce serious immunological disorders in humans. Aluminium in adjuvant form carries a risk for autoimmunity, long-term brain inflammation and associated neurological complications and may thus have profound and widespread adverse health consequences.

When you orally ingest aluminium, your body will absorb between 0.2 to 1.5% of it. When aluminum is injected into muscle, your body absorbs 100%, which is why aluminum-containing vaccines are likely far more dangerous than eating aluminium. Numerous studies provide compelling evidence that injected aluminium is detrimental to health. In a paper by Lyons-Weiler and colleagues published in the Journal of Trace Elements in Medicine and Biology, the researchers methodically show that current levels of aluminum in vaccines are wrongly termed “safe” by the Food and Drug Administration and derive from “outdated information, unwarranted assumptions and errors.” They further state that “the levels of aluminium currently present in individual vaccines and in the modern vaccine schedule as a whole are “problematically high.

Another paper by Tomljenovic and Shaw affirmed that aluminium is a neurotoxin and may be a co-factor in several neurodegenerative disorders and diseases, including Alzheimer’s, Parkinson’s, multiple sclerosis, amyotrophic lateral sclerosis (ALS), autism, and epilepsy. According to the authors, “The continued use of aluminium adjuvants in various vaccines for children as well as the general public may be of significant concern. In particular, aluminium presented in this form carries a risk for autoimmunity, long-term brain inflammation and associated neurological complications and may thus have profound and widespread adverse health consequences.”

Recent data by Perricone et al. showed that aluminium adjuvants in vaccines have been linked to multiple sclerosis, systemic lupus erythematosus, chronic fatigue syndrome, Gulf War syndrome, macrophagic myofasciitis, arthritis, and autoimmune/inflammatory syndrome induced by ad